
TOP 10 METEOR
PERFORMANCE

PROBLEMS

H O W T O A D D R E S S T H E

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

1

HOW TO ADDRESS
THE TOP 10 METEOR
PERFORMANCE PROBLEMS
When Meteor was first released in 2012, it represented a fairly ground-breaking
approach to building web and mobile apps. All of a sudden, it became much more
simple to create real-time applications using a single language on both the client
side and server side.

Many, like us at Project Ricochet, experimented
with Meteor and were impressed by how things just
“magically” worked. Even in those early beta releases!
Key features included database triggered live-page
updates, data synchronization, live queries, latency
compensation, hot code pushes, and more. Before
long, Meteor developers (ours included) started
turning their ideas into actual production apps.

Perhaps the true magic of Meteor is how it helps simplify a set of complex
technologies behind the framework. This gives developers capabilities that
previously were not possible – or required a large amount of resources.

Certainly, that newfound simplicity made it easier for developers to create
amazing real-time applications. However, if you weren’t careful, application
performance could slip in fairly rapid fashion. Add a few concurrent users —
and you could suddenly encounter all sorts of issues.

In four short years Meteor has greatly matured to become a polished
end-to-end stack. The community and knowledge base around Meteor has
also grown immensely.

Here at Project Ricochet, our Meteor knowledge has dramatically improved by
tackling our own challenges and learning from others. We’ve now written over
500,000 lines of Meteor code. Early on, we recognized the potential value of

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

2

learning more about the framework. From the day we started experimenting with
Meteor, we have also learned where and how to minimize performance problems.

Set aside Meteor for a moment. Any web or mobile application that takes on
a growing number of users can suffer performance issues. More users can
readily cause bottlenecks to key resources like the CPU, network, memory, or the
database. And, with more demand on resources, users begin to experience longer
response times. Client and server machines can start maxing out on CPU and
memory usage.

Well, Meteor applications are no different.

Here, we’ll present the top 10 major Meteor performance issues our team has
encountered over the past few years. We’ll also offer solid ideas on how to
minimize them or avoid them altogether. These issues occur in different points of
the stack – from the database all the way to the devices the apps run on.

Certainly, these aren’t the only performance pitfalls possible with Meteor. But
we believe these are some of the most critical issues to watch out for when
developing your Meteor application. We hope this list can help you more easily
navigate through the big challenges we’ve had to face.

At first, the Meteor feature that perhaps impresses most is the fact that
applications are real-time by default. Whether back in 2012 or even today, seeing
your database updates display in the browser automatically is both useful and
impressive. So now, when aspects of an app you want to create need to function
in real-time, the Meteor framework is a natural choice for development.

Behind the scenes, delivering this real-time capability is no easy undertaking. It
places a high demand on the CPU, memory, network, and the database to work.
This is why your snappy real-time app can rapidly decelerate as more users start
coming on board.

So, how can you get the best performance from your Meteor app as you develop?
You can start by increasing your awareness of the following issues:

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

3

 ISSUE #1: PREVENT METEOR FROM
 PUBLISHING TOO MUCH DATA
You may have heard this one already. It’s one of the first performance
optimizations a Meteor developer tends to discover. But given the performance
cost from tracking a large amount of real-time data, it’s definitely worth a
reminder.

With Meteor, the server maintains a copy of every client’s version of
the database. So, the more clients connected, the more copies it has
to track. Now, having many clients means your app is being used
and appreciated. So, you probably don’t want to reduce the number
of clients. But you should reduce the potential performance hit by
minimizing the amount of data needed by each client.

We can do this via our Publish functions. The Publish functions make
real-time data available for each client to use. So, if you can implement the Publish
function to send only what is absolutely needed, the amount of data is reduced.

To do this, you must first understand why every part of the data set is needed and
how they will be used. Is the data associated with a certain user? If so, is only that
user’s data needed? Will all the fields be required for display or processing on the
client? Or, just a certain subset? Will all records be displayed at the same time? Or,
will the user “page through” the data set? Asking questions like these will provide
ideas on how to start narrowing your publication.

Let’s say you’re developing a chat app. If only a list of authors participating in a
certain channel are needed, then you can use field filtering in your publish function
to send back only their names:

Meteor.publish(“channelParticipants”, function(channelId) {
	 return	Messages.find({
 channelId: channelId
 }, {
	 	 fields:	{
 authorName: 1
 }
 });
});

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

4

If your publication needs to support infinite-scroll type of pagination, you can
use the popular percolate:paginated-subscription package. This makes it easy to
request a limited number of documents at a time.

 ISSUE #2: MANAGE COUNTING AND AGGREGATION
 FUNCTIONS ON THE CLIENT SIDE
Ever need information about the collection as a whole — such as the number of
records? One inefficient way to do this is to publish a subset of the collection

(or even worse, the entire collection) to the client for a count to be
performed there. The problem with that approach is related to Issue
#1. A potentially large amount of data will be published, taxing both the
server and network.

In this case, it’s better to run a query on the server side and perform a
count there. This eliminates the need to send the entire collection to
the client. You can implement this using a Meteor method:

Meteor.methods({
 ‘numberOfMessages’ () {
	 	 return	Messages.find().count();
 }
});

If you absolutely need a real-time count, you can use the tmeasday:publish-counts
package which does the same thing via a publication. Just be aware that it’s not
designed to return a count for large datasets. From its documentation:

Publish-counts is designed for counting a small number of documents

around an order of 100. Due to the real-time capability, this package

should not be used to count all documents in large datasets. Maybe

some, but not all. Otherwise you will maximize your server’s CPU usage

as each client connects.

The same goes for other aggregation operations. Depending on the circumstance,
attempting to perform aggregation-related functions like sums or even counts on
the client often involves a large dataset. It’s more efficient to perform aggregation

https://atmospherejs.com/percolate/paginated-subscription
https://atmospherejs.com/tmeasday/publish-counts

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

5

on the server and provide the client with the calculated values.

There are several packages which provide MongoDB aggregation support on
Meteor’s server side. One popular one is meteorhacks:aggregate.

In our example, if the client needs to display the number of messages per topic
(instead of requesting all messages then calculating this value on the client) this
aggregate package can be used to determine that on the server side:

Messages.aggregate(
 [
 {
 $group : {
 _id : “$channelId”,
 channelCount: { $sum: 1 }
 }
 }
]
)

 ISSUE #3: PUBLISH DATA IN REAL-TIME
 ONLY WHEN NEEDED
So, Meteor makes your app real-time by default. But as we’ve also learned,
performance can be penalized if you’re not careful. What if there is data we
don’t need to be real-time in the first place? How can we prevent the server from
unnecessarily sending updates to the client since we’re not going to use it?

Consider our chat app. We’d like the homepage to display the most
recently created channels, but it’s not required for this list to update if
the user stays on the page indefinitely.

To improve this, you could create a Meteor method that performs
the query on the server, then returns an array of channels. Method
responses are not reactive data sources. However, we may lose the
convenience of being able to further query the response using the

Collection API. Instead, we can provide it as a publication. This enables the client
to access it as a data collection, but prevents further changes on the dataset —

https://atmospherejs.com/meteorhacks/aggregate

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

6

effectively disabling its reactiveness:

Meteor.publish(“newestChannels”, function() {
	 const	docs	=	Channels.find({},	{
 sort: {
 createdAt: -1
 },
	 	 fields:	{
 _id: 1,
 name: 1
 },
 limit: 10
 }).fetch();
 docs.forEach(channel => this.added(“channels”,
channel._id, channel));
 this.ready();
});

In the above code, the initial query gets the names of the 10 most recently created
channels. However, instead of returning a cursor to the dataset, it fetches all
the records, and copies it to separate collection that the client can subscribe
to. Because this collection will not be updated (notice there are no updated or
removed callbacks implemented) this data set will not change.

 ISSUE #4: PREVENT A HIGH NUMBER OF OBSERVERS
When a client subscribes to a publication, observers are set up on the server
to track any data changes that might occur on the queries involved. The more
connected clients there are, the more subscriptions are established, which
increases the number of observers. These observers place more demands on the
CPU and the network between Meteor and MongoDB.

Meteor attempts to optimize this situation by checking to see if there
are any active matching observers. More specifically, if an existing
observer was created from a query that uses the same collection, same
selector, and same set of query options, then it can be reused. So, you
can help improve Meteor’s efficiency here by creating publications that
increase the chance for observer reuse.

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

7

For example, try to normalize your query or options. Rather than asking it to query
based on a client-provided limit like so:

Meteor.publish(‘recentMessages’, function(limit) {
			return	Messages.find({},	{limit:	limit});
});

… round up the limit to the nearest 10:

Meteor.publish(‘recentMessages’, function(limit) {
 var base = 10;
 var normalizedLimit = limit + (base - (limit % base))
			 return	Messages.find({},	{limit:	normalizedLimit});
});

The client can then limit it further if necessary. Doing this means Meteor can reuse
the same observer for two subscription requests if they passed in limits of 15 and
20, for example.

You can measure how much observer reuse occurs in your app with Kadira, a
performance monitoring platform for Meteor. It’s a must have for monitoring your
production apps. Kadira includes an Observer Reuse metric that can be tracked
over time. It helps you identify which publications are candidates to optimize.

 ISSUE #5: OPTIMIZE HOW METEOR
 HANDLES SUBSCRIPTIONS

Meteor uses a pub/sub approach to handling application data. We
covered publications in the last example. What about subscriptions?

Every subscription triggers the set up and flow of real-time data
between the client and server. As more subscriptions become active, or
as the data set of each subscription grows, more demands are placed
on the entire system. So, applying optimizations to your subscriptions
can really help with performance too.

In a way similar to what Meteor does for publications, Meteor applies
optimizations for subscriptions too, when it can.

https://kadira.io/

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

8

From the Meteor Docs:

If you call Meteor.subscribe within a reactive computation, for example

using Tracker.autorun, the subscription will automatically be cancelled

when the computation is invalidated or stopped; it is not necessary

to call stop on subscriptions made from inside autorun. However, if

the next iteration of your run function subscribes to the same data set

(same name and parameters), Meteor is smart enough to skip a wasteful

unsubscribe/resubscribe.

But, we can also help Meteor here. If normalizing the parameters isn’t feasible
on the recentMessages publication, as showcased in the last example, we can
apply the normalization in the subscription instead.

Meteor.subscribe(“recentMessages”, normalizedLimit);

It’s not as optimal as normalizing on the publication, as it puts the responsibility
on the client subscription. But it does offer the flexibility for the client to choose,
based on the situation, whether it’s acceptable to normalize or not.

 ISSUE #6: DISABLE UNNECESSARY REACTIVITY
Sometimes there’s too much of a good thing.

Anytime a publication’s dataset changes, computations observing
that dataset will rerun. This allows the client to react appropriately.
But if the data changes frequently, the computation will have to rerun
frequently as well. If there’s a lot is happening in the computation, this
can slow down the app.

Consider our chat app example again. Suppose we want to perform
some operations on the content of the most recent 20 messages. We

could set up the subscription and computation as follows:

Meteor.subscribe(“recentMessages”, 20);
Tracker.autorun(function() {
			var	recentMessages	=	Messages.find({}).fetch();
 // some very expensive operations
})

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

9

Trouble is, this computation will rerun with any changes to the dataset, even if we
don’t need the values that were changed. So, if each message has a views field that
gets incremented when a message is viewed, that update will trigger the computation
to rerun. If the computation doesn’t even use the views value, that’s a waste.

So, why not filter your query to only the fields that are needed?

Tracker.autorun(function() {
			var	recentMessages	=	Messages.find({},	{fields:	
{content:1}}).fetch();
 // some very expensive operations
})

Now, only if the content field is updated will this computation rerun. If you don’t
need reactivity at all, then disable it by using Tracker.nonreactive(). This can come
in handy, for example, in functions that are reactive computations by default, like
template helpers.

Template.recentMessages.helpers({
 messages: function() {
 return Tracker.nonreactive(function() {
					return	Messages.find({},	{fields:	{content:1}}).fetch();
 });
 }
});

Finally, if your computation requires some data to be reactive and some not,
then you can disable reactivity per query. In the following example, we use
react-meteor-data’s createContainer function to create a React container
component, RecentMessagesContainer. For our purposes, we don’t need this
computation to rerun at all if the recentMessages dataset changes. So, we can
disable it by passing in the reactive: false option.

export default RecentMessagesContainer =
 createContainer(({}) => {
 Meteor.subscribe(‘recentMessages’, 20);
 const recentMessages =
									Messages.find({},
													{fields:	{content:1},	reactive:	false}).fetch();
 // some very expensive operations and other reactive
queries
 return {
 recentMessages
 };
 }, RecentMessages);

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

10

Remember, in Meteor, apps are real-time by default. To improve performance,
analyze the needs of your app and its users, then selectively optimize reactivity
using the strategies suggested in these last few sections.

 ISSUE #7: REDUCE UNNECESSARY
 POLLING FOR DATABASE CHANGES
Meteor will automatically poll the database for changes on an ongoing basis. This
isn’t necessarily a bad default setting for when there’s frequent updates. But, it’s
a waste of resources on both the Meteor server and MongoDB whenever data
changes don’t occur.

As far back as version 0.7, Meteor could read the MongoDB “operations
log.” It’s a special collection that logs all the write operations occurring
in your database. From this log, Meteor will notice instantly when an
update occurs, and call the necessary callbacks to trigger reactive
updates.

“Oplog tailing” is actually enabled by default on your local development
environment, but in your other environments – like Production – you’ll

need to enable it manually. You can do so by setting the MONGO_OPLOG_URL
environment variable:

MONGO_OPLOG_URL=mongodb://oplogger:PasswordForOplogger@
mongo-server-1.example.com,mongo-server-2.example.com,mongo-
server-3.example.com/local?authSource=admin&replicaSet=replic
aSetName

There are certain types of queries, however, where Meteor can’t use the oplog
to watch for updates. From Meteor’s OplogObserveDriver documentation, these
include:

• Selectors containing geospatial operators, the $where operator,

or any operator not supported by Minimongo (such as $text)

• Queries specifying the skip option

• Queries specifying the limit option without a sort specifier or

with a sort based on $natural order

http://docs.meteor.com/#selectors
https://github.com/meteor/docs/blob/version-NEXT/long-form/oplog-observe-driver.md

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

11

• Field specifiers and sort specifiers with $ operators such as $slice

or $natural

• Calls to observeChanges using “ordered” callbacks addedBefore

and movedBefore. (The implicit call to observeChanges which

occurs when you return a cursor from a publish function does not

use the ordered callbacks.)

So, avoid these if you can!

Optimizing oplog usage helps facilitate quicker reactive updates and lower CPU
usage on the server and MongoDB for your app.

 ISSUE #8: IDENTIFY AND RESOLVE
 SLOW READS AND WRITES

READS
As your database grows, likely you’ll notice certain queries take longer to execute.
More data means more information for MongoDB to process your query against.
These issues can often catch you off guard, because they hardly ever happen in a
local development database featuring a smaller amount of test data. However, in
Production this degradation can happen quickly. Especially with a significant and
sudden increase in users.

The best way to speed up your queries is to add indexes to your
collections. These are special data structures that store a small portion
of the collection’s data set in an easy to traverse form. All your queries
should be supported by an index. Without indexes, MongoDB must
scan every document in a collection to find the ones that match the
query statement. If an appropriate index exists for a query, MongoDB
can use the index to limit the number of documents it must inspect.

For example, if you have the following query:

Messages.find({“authorId”:	authorId});

This can drastically slow your app down as more messages are stored in the

http://docs.meteor.com/#fieldspecifiers
http://docs.meteor.com/#sortspecifiers
http://docs.meteor.com/#meteor_publish

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

12

collection. To ensure this doesn’t happen, create an index on authorId.

Meteor.startup(function() {
 if (Meteor.isServer) {
 Messages._ensureIndex({ “authorId”: 1 });
 }
});

You can confirm the index exists in your local database via Meteor mongo:

> meteor mongo
meteor:PRIMARY> use meteor
meteor:PRIMARY> db.Messages.getIndexes()
 {
 “v” : 1,
 “key” : {
 “authorId” : 1
 },
 “name” : “type_1”,
 “ns” : “meteor.Messages”
 }

Finally, to confirm that your query will take advantage of this index, use
MongoDB’s explain function to reveal how it will execute this query.

meteor:PRIMARY>	db.Messages.find({authorId:	“12345”}	
).explain()
 “winningPlan” : {
 “stage” : “FETCH”,
 “inputStage” : {
 “stage” : “IXSCAN”,
 ...

In this case, MongoDB reports that when it executes this query, it will use the
authorId index instead of spanning the entire collection to search for matching
messages. This is indicated by the “IXSCAN” in the winningPlan’s inputStage
stage value. If you see “COLLSCAN” instead, it means MongoDB did not find an
index to help run the query and it will scan the entire collection — incurring a big
performance hit.

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

13

WRITES
As usage grows, you also may notice database updates taking longer too. Just
like the queries, updates will use indexes when available to find the documents to
update. Thus, you should also create indexes to support update operations. For
example, the following update:

Messages.update({ “authorId”: authorId }, {$set: {archived:
true}}, {multi: true});

… will also also utilize the authorId index we created to quickly find and update
all messages belonging to authorId.

When writing to the database, it’s not just locating the documents to update
that can slow things down. In MongoDB’s original storage engine, MMAPv1.
write operations to the same collection can only happen one at a time. Other
concurrent writes would have to wait their turn — a situation that can quickly lead
to bottlenecks.

Meteor 1.4 provides support for MongoDB’s newest storage engine, called
WiredTiger. WiredTiger offers document-level concurrency control. That means
your application can perform concurrent write operations as long as they’re
updating different documents. The MongoDB team claims WiredTiger can deliver
up to 7 - 10x performance improvement.

All new Meteor 1.4 applications use WiredTiger by default. If you have an existing
application that you’ve upgraded to Meteor 1.4, and you don’t mind losing your
existing development data, simply type:

> meteor reset

… and your Meteor 1.4 app will create a new, WiredTiger-powered database the
next time you start it up.

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

14

With your app running, you can confirm it’s on WiredTiger with the mongo shell:

> meteor mongo
> db.serverStatus().storageEngine
{
 “name” : “wiredTiger”,
 “supportsCommittedReads” : true,
 “persistent” : true
}

 ISSUE #9: MINIMIZE SLOWDOWNS
 FROM THIRD-PARTY SERVICES
Sometimes the fault for bad performance lies elsewhere. Often our apps rely on
data and services from third-party providers. And, while doing so allows us to
leverage their platforms, the performance of our apps can be at their mercy if
we’re not careful.

Each time you utilize an external service, try to take into account:

• Any dependencies to the response of these services

• The expected performance of this service

• Any quotas or rate limits to this service

USING UNBLOCK()
Calling external services from the server are typically triggered by the client
when it calls a Meteor method. Methods are processed in sequence for a client.

If a particular method is taking a long time because it’s waiting for a
response from an external service, subsequent methods will wait. This
is because executing these methods in a predictable order is generally
safer and leads to less bugs. From the user’s point of view, however,
this could slow down your app. If you’re absolutely sure there are no
dependencies on the response of this external service, then you can
tell Meteor to go ahead and process subsequent method calls without
waiting for the current one to complete.

For example, suppose we wanted to send an email notification to an offline user

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

15

when a new chat message is received. In this app, we can safely say that the
sending of this email doesn’t affect any other methods that may be running.
Therefore we can tell Meteor that it’s ok to process subsequent method calls from
the same client using the unblock() function:

Meteor.methods({

 //notify the user a message was received
 notifyUserMessageReceived: function(username) {
 this.unblock(); // tell Meteor it’s ok to execute
subsequent method calls
							EmailService.sendEmailNotification(username);
 }
});

CACHING RESPONSES
Sometimes we’ll use an external service to query for data. If the data is not
expected to change frequently – such as the current weather, or yesterday’s
sports scores – we can store the response on our app’s server side and use this
cache response for a given window of time. Only once we indicate that a cache is
stale does the server have to query the third party service again.

The downside is that we’re using up more server memory or local database
storage, depending on how we’re storing the response. It’s important to calculate
and take into account how big the cache can grow. However, the upside is we can
potentially benefit from much faster performance, minimize any transaction costs,
and avoid going over the usage quotas some external services may have.

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

16

 ISSUE #10: USE HARDWARE ACCELERATION
 FOR MOBILE ANIMATIONS
The Project Ricochet team has found Meteor extremely useful for building
mobile apps. It allows us to build apps for smartphones and tablets using the
same familiar framework and assets that we already use for web apps. Meteor’s
Cordova integration makes this possible.

Mobile apps have come a long way. In many respects, they can provide
better user experiences than their web app counterparts. With access
to mobile-only hardware like GPS, accelerators, and fingerprint sensors,
you could argue that mobile apps have raised the bar for what users
expect from their technology interactions.

A clear example of that would be the animations that native apps
often deploy to visually communicate feedback, information hierarchy,

function changes, and prompts. Native apps have access to the device’s GPU to
generate these effects. In Meteor and Cordova, we can achieve similar animations
using web technologies, like Javascript and CSS. However, because of the browser
software they are rendered in, they often don’t have the same silky smooth
movements. Instead, what users see are choppy, clunky movements that distract
us from the true intentions of these communication cues. Users also interpret this
(rightly or wrongly) as slow app performance.

Mobile apps benefit from access to the device’s graphical processing unit
(GPU). The GPU hardware accelerates the rendering of graphics like animations.
Fortunately, browsers today have also learned to utilize the GPU, particularly for
3D effects. In fact, we can even “trick” the browser to use the GPU to render 2D
animations using a selected few CSS properties:

• transform

• opacity

• filter

To achieve smooth animations, use these properties when possible. For example,
we can animate an object by modifying its top and left properties. This change
doesn’t get processed by the GPU.

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

17

The following will render a somewhat jittery animation:

.go-around-animation{
		animation:	go-around-keyframes	10s	infinite;
}
@keyframes go-around-keyframes{
 0%: {
 top: 0;
 left: 0;
 }

		25%	{
 top: 0;
 left: 200px;
 }

		50%	{
 top: 200px;
 left: 200px;
 }

		75%	{
 top: 200px;
 left: 0;
 }
}

So, rather than modifying an object’s top and left properties, use the
transform property instead. You can achieve the same animation but have it
rendered by the GPU:

.go-around-animation {
		animation:	go-around-keyframes	10s	infinite;
}

@keyframes go-around-keyframes{
 0%: {
 transform: translate(0, 0);
 }

		25%	{
 transform: translate(200px, 0);
 }

		50%	{
 transform: translate(200px, 200px);
 }

1.800.651.3186 | info@projectricochet.com

How to Address the Top 10 Meteor Performance Problems

18

		75%	{
 transform: translate(0, 200px);
 }
}

This also improves the app’s performance on the desktop. Doing this for Meteor’s
Cordova apps ensures that your app can compete, in terms of user experience and
the illusion of performance, with the other native apps that are also installed on
the device.

 EXPECT MORE CHALLENGES
Meteor is a full-stack framework that handles everything from the browser to the
database and everything in between. As usage for your app grows, performance
problems can surface at any point in the stack. Though Meteor makes it easy to
achieve amazing real-time experiences, there are some potentially debilitating
performance costs if you’re not careful.

Editing the list down to 10 issues here was difficult. But, based on our
experience, we saw these challenges most often. Likely, you’ll run into a
few of them in your apps too.

Hopefully these strategies will help you quickly fine tune your Meteor
app. We want to see you quickly convert ideas into apps that perform
spectacularly — and attract lots of users!

 CONTACT US TO LEARN MORE
Questions about this white paper? Would you like to hear more about
how Project Ricochet can help you implement a strategy that best
leverages Marketing, Design, Content, and Engineering with regard to
Drupal in your organization?

If so, please reach out via phone (800) 651-3186 or email
info@projectricochet.com.

https://projectricochet.com

